
Open Sherlock

Jack Park
TopicQuests Foundation

Marc-Antoine Parent
Conversence

Presentation: 20220624

© 2022 TopicQuests Foundation

Jp
le

ni
o

ht
tp

s:
//

pi
xa

ba
y.

co
m

/p
ho

to
s/

su
ns

et
-

tr
ee

-d
aw

n-
su

n-
na

tu
re

-d
us

k-
31

56
44

0/

Context and problems
on the table?

• Context
• Improved human/machine systems

capabilities in the face of complex,
urgent problems (Engelbart)

• Problems
• Human activity

• Collaboration
• Information Silos

• Knowledge representation
• User experience

Photo by Sigmund on Unsplash

Research
Questions

• Can a topic map learn by
reading?

• What software architectures
support machine reading in the
context of topic mapping?

Photo by Eliott Reyna on Unsplash

Solution research
under way?
• Collaboration and User Experience

• Knowledge gardens
• Subject of a different talk

• Open Source: OpenSherlock
• Information Silos

• Literature-based discovery
• Machine reading
• Knowledge federation

• Knowledge representation
• A range of representation systems working

together
• Hybrid architectures

• Pandemonium-style architectures

Photo by Kaleidico on Unsplash

Towards a “Cognitive” Platform: OpenSherlock*

• OpenSherlock is:
• A Topic Map for information resource identity and organization
• A society of agents system which can

• Read documents
• Process information resources

• Maintain the WordGram graph
• Maintain the topic map
• Build and maintain models
• Perform discovery tasks

• Read Literature
• Physical process discovery
• Literature-based discovery
• (eventually) Theory formation

• (eventually) Answer questions
• Agents are coordinated by:

• A blackboard system
• A dynamic task-based agenda
• Event propagation and handling

• Stream processing

*OpenSherlock is an open source mostly
Java-based research platform.

OpenSherlock’s Use Cases

1) Merge decision and implementation for topic maps
2) Research: machine reading
3) Literature-based discovery across the entire topic map and beyond
4) (experimental) Question answering
5) (eventually) Theory formation, process discovery

A Cognitive Architecture

• “A cognitive architecture is, first, a software architecture that
supports communication between software modules, shared
resources and workspaces, and control. What makes it cognitive is
that the modules implement abilities we generally call perceptual or
cognitive.”†
• Long-term Memory (LTM)
• Short-term (working) Memory (STM)
• Pattern recognition
• Symbol manipulation
• Decision making
• Data
• …

†Cohen, P (2010) Lecture 3: Cognitive Architecture.
http://w3.sista.arizona.edu/~cohen/cs-665-spring-2010/lectures/PDFs/Lecture3.pdf

Photo by Michal Vrba on Unsplash

Machine Reading: Natural
Language “Understanding”

8Photo by Bethany Laird on Unsplash

Towards a Machine Reading Architecture

• Workflow
• Documents à Intermediate

Structures à Higher-order
Structures
• TopicMaps
• Conceptual Graphs
• Probabilistic Graphs
• …

Topic Maps: Long Term Memory (LTM)
• A Topic Map is like a library without all the books

• A container for a universe of topics
• A Topic Map is indexical

• Like a card catalog
• Each topic has its own representation (proxy)

• Improving on a card catalog, a topic can be identified many different
ways

• Captures metadata and optionally content
• A Topic Map is relational

• Like a good road map
• Topics are connected by associations (relations)
• Topics point to their occurrences in the territory

• A Topic Map is organized
• Multiple records on the same topic are co-located (stored as one

topic) in the map
• One location in the map for each topic

Img: Jack Park

Observations 1

• A Topic Map is central to the key
research question
• It serves as a kind of memory for

social processes
• It provides a robust platform for

subject identity
• It also serves as a repository for

domain-specific vocabularies
(ontologies, taxonomies, naming
conventions,…)
• It federates those vocabularies Cultural Algorithm Framework†

† After Figure 1: Reynolds, RG & Peng, B (2005) CULTURAL ALGORITHMS: COMPUTATIONAL
MODELING OF HOW CULTURES LEARN TO SOLVE PROBLEMS: AN ENGINEERING EXAMPLE.
Cybernetics and Systems An International Journal Volume 36, 2005 - Issue 8

Observations 2

• A Topic Map is necessary but not sufficient to support discovery, learning, or
problem solving
• It provides a powerful indexical structure related to the key artifacts in any universe of

discourse:
• Actors
• Their relations
• Their states
• Rules, laws, theories,…

• To model those key artifacts, other representation strategies are required, which
layer above the Topic Map
• Conceptual Graphs
• Qualitative Process Theory
• Belief Networks
• Deep Learning
• …

12

Knowledge Representation: Symbol Systems

• A physical symbol system (also called a formal system) takes physical
patterns (symbols), combining them into structures (expressions) and
manipulating them (using processes) to produce new expressions.†
• We consider the identifier of a topic in a topic map as a symbol
• Example base structure: RDF triples

• { subject symbol, predicate symbol, object symbol }

† https://en.wikipedia.org/wiki/Physical_symbol_system

asA?

• For taxonomy, we have isA
• And its variants

• subclassOf
• instanceOf

• For roles, we do not have asA
• Instead, we model roles
• Ulam quote

"When you perceive intelligently, you
always perceive a function, never an
object in the physical sense. Cameras
always register objects, but human
perception is always the perception
of functional roles. The two
processes could not be more
different.... Your friends in AI are
now beginning to trumpet the role of
contexts, but they are not practicing
their lesson. They still want to build
machines that see by imitating
cameras, perhaps with some
feedback thrown in. Such an
approach is bound to fail...”

†Hofstadter, DR (1995). On Seeing A‘s and Seeing As
https://www.foundalis.com/res/drh/OnSeeingAs.htm

Stanislaw Ulam † :

TopicMap Structure

•Topics as Actors
•Topics as Role Players
•Topics as Relations
•Topics as Types
•Topics as Biographies

Relation
Biography

Actor
Type

Relation
Type

Actor
TypeRole Type Role Type

Relation ActorActor

The meaning of this Relation is
precisely: An Actor playing a Role is
in a particular Relation with another
Actor playing a Role, in the context
of biographical records.
Note: Since this Relation is a Topic,
it, too, can be an Actor in other
Relations

Context, Scopes

• Let us consider a claim in the form of a topic relation
• When a claim is asserted, that claim is surrounded by context
• We can say that every topic has a biography
• A biography can include

• Historical records
• Specific dates
• Experiments
• Justifications and objections
• Epistemic status
• Occurrences

Shifting to Implementation Concepts

Machine Reading in OpenSherlock

• Process Loop:
• For a given document
• For every paragraph in that document
• For every sentence in each paragraph
• Read the sentence

Each Document has a
Blackboard (STM)

Each Paragraph has a
Blackboard (STM)

Each Sentence has a
Blackboard (STM)

*

11

*

*

1

Document

id int

content text

source url

TextFragment

id int

doc int

part_of int

type FragmentType

start int

end int

content text

wordgram int

WordGram

id int

symbolic boolean

phrase text

frequency int

Sentence Reading
• First Step: Identify common phrases (and words) in sentences
• The phrase‘s occurrence at a location in a document is a TextFragment
• WordGram structure records aggregate metadata about recurring phrases

• Count of TextFragments serves as basis for probabilistic models

1 1

*

1

*

1

1

*

WordGram

id int

symbolic boolean

phrase text

frequency int

Topic

id int

type int

hash sha256

label int

tentative boolean

attributes json

TopicName

topic int

phrase int

Sentence Reading
• Second Step:
• Frequent WordGrams may already have been associated to Topics

(TopicName relation)
• A single name is designated as the Topic’s preferred label

*

1

*

1 1

1

*

1

1

*

*

1

*

1

1 *
TextFragment

id int

doc int

part_of int

type FragmentType

start int

end int

content text

wordgram int

WordGram

id int

symbolic boolean

phrase text

frequency int

Topic

id int

type int

hash sha256

label int

tentative boolean

attributes json

TopicOccurence

topic int

occurence int

modality EpistemicMode

likelihood float

TopicName

topic int

phrase int

Sentence Reading
• Second Step: According to how many Topics are found through TopicNames:

• Single Topic: Create a TopicOccurrence, associating the TextFragment to the Topic
• If no Topic yet exists for a frequent WordGram, create a tentative Topic placeholder
• Multiple Topics: See if the context allows to disambiguate.
• Multiple plausible Topics: Create many tentative TopicOccurrences, in order of

plausibility.
The TextFragment’s Topics (via TopicOccurrences) are a subset of the underlying Wordgram’s Topics (via TopicNames)

*

11
*

1
*

1

*

Topic

id int

type int

hash sha256

label int

tentative boolean

attributes json

Casting

relation int

role int

actor int

Sentence Reading
• Second Step:
• If the Topic’s type is a known RelationType, identify the other component

Topics (Actors) and their Roles. Store those Castings in the relational Topic.
• This is similar to a Frame (FrameNet)

• Continue recursively, as Relations can be Actors in higher-order Relations (e.g.
causal inference, evidence, etc.)

*

1

1 *

*

1 1 1

*

1

1

*

*

1
*

1
*

1

*

1

*

1

*

1

Document

id int

content text

source url

TextFragment

id int

doc int

part_of int

type FragmentType

start int

end int

content text

wordgram int

WordGram

id int

symbolic boolean

phrase text

frequency int

Topic

id int

type int

hash sha256

label int

tentative boolean

attributes json

TopicOccurence

topic int

occurence int

modality EpistemicMode

likelihood float

TopicName

topic int

phrase int

Casting

relation int

role int

actor int

Full diagram view

Sentence Reading as an Iterative Process
• Since the same WordGrams serve many sentences

• Any change of interpretation of a WordGram
(TopicName relations) affects TopicOccurrences
• Internal: Change from Unknown to new Noun,

Noun Phrase, Verb or Verb Phrase
• Creation of a tentative Topic
• Tentative Topic becomes well-defined
• Association with a previously defined Topic

• TopicName change events enable unfinished (not
fully read) sentences to iterate and possibly finish.

Source: https://www.incredible-web.com/blog/performance-of-for-loops-with-javascript/

Sentence Reading Revisited

• Sometimes
• TopicMap recognizes terms

• Mostly
• Sentence is read by pattern recognition tools

• IF-THEN sentence structure rules (Grammar rules)
• Augmented by Lenses

• Frame Semantics (e.g., FrameNet)† (Templates)
• Language Models

• TopicMap learns from those results † Baker, CF, Fillmore, CJ, Lowe, JB (1998). The
Berkeley Framenet Project. COLING '98
Proceedings of the 17th international
conference on Computational linguistics,
Volume 1

26

Lenses

27Photo by Claudio Schwarz on Unsplash

From WordGrams to relational Topics

• Identify elementary topics
• Nouns: “CO2”, “Carbon Dioxide”, … à [CO2]
• Verbs: “causes”, “is caused by”, … à [causes (cause, effect)]

• Construct Relation
• Two sentence example

• “CO2 is a cause of climate change.”
• “Changing climate is caused by carbon dioxide.”

• Both result in the same structure:
• [causes (cause: [CO2], effect: [climate change])]

28

Topic structure

• A Topic is a structured record of
• Unique identifier
• Topic type (or types?)
• Attributes (key-value pairs, where the value is a literal)
• Castings (key-value pairs, where the key is a role and the value is a topic)
• The keys are elementary topics
• The topic should be identified by its content, and should be content-

addressable
• Identifiers could be hashes?

• Each topic has a biography, the set of its TopicOccurences

29

Topic mapping process

• Disambiguation of subjects is a topic mapping process
• Learning means continuous refinement of subject identity

• Topics may be merged or split as we learn about their defining characteristics
• We may define some of the Topic’s attributes as unique for a given topic type and

application domain
• Ambiguities can also be solved through machine learning and/or human

intervention

30

A Simple Example

• Read this sentence:
• Gene expression is caused by soluble hormones binding to a plasma membrane hormone

receptor
• Topic Map recognizes:

• “Gene expression” ß [GeneExpression]
• “soluble hormones” ß [SolubleHormone]
• “plasma membrane hormone receptor” ß [PlasmaMembraneReceptor]

• Software agents transform:
• “is caused by” ß [Cause]
• “binding to” ß [Binds]

• Final semantic structure (Nested N-Tuples):
• [Cause

cause: [Binds what: [SolubleHormone] to: [PlasmaMembraneReceptor]]
effect: [GeneExpression]]

31

A Complex Example

• The Sentence:
• “The pandemic of obesity, type 2 diabetes mellitus (T2DM) and nonalcoholic

fatty liver disease (NAFLD) has frequently been associated with dietary intake
of saturated fats (1) and specifically with dietary palm oil (PO) (2).”

• Expected WordGram Triples:
• [associated what: [Obesity] what: [saturated fats]]
• [associated what: [Obesity] what: [palm oil]]
• [associated what: [T2DM] what: [saturated fats]]
• [associated what: [T2DM] what: [palm oil]]
• [associated what: [NAFLD] what: [saturated fats]]
• [associated what: [NAFLD] what: [palm oil]]

32

Just One Triple—In 3 Slides—The Predicate

{
"pred": {

"gramSize": "2",
"sentences": ["ef471f0c-08c9-4097-ac17-354a32944fe1"],
"vers": "1489448293804",
"words": "associated with",
"Lex Types": ["vp"],
"predicate Tense": "present",
"id": "27637.27587",
"gramType": "pair",
"lensCodes": ["BioLens"]

},

33

The Object
"obj": {

"dbpo": {
"@percentageOfSecondRank": "0.0",
"@URI": "http:\/\/dbpedia.org\/resource\/Saturated_fat",
"@support": "455",
"@surfaceForm": "saturated fats",
"@offset": "156",
"@similarityScore": "1.0",
"@types": ""

},
"gramSize": "2",
"sentences": ["ef471f0c-08c9-4097-ac17-354a32944fe1"],
"synonyms": ["27739."],
"vers": "1489448293876",
"words": "saturated fats",
"lexTypes": ["np"],
"id": "27738.13882",
"gramType": "pair"

},

DBPedia
recognized

a topic

WordNet
returned a
synonym

34

The Subject and WordGram Triple Identity
"id": "27000._27637.27587_27738.13882T",
"subj": {

"dbpo": {
"@percentageOfSecondRank": "1.0799338377810428E-21",
"@URI": "http:\/\/dbpedia.org\/resource\/Obesity",
"@support": "3012",
"@surfaceForm": "obesity",
"@offset": "16",
"@similarityScore": "1.0",
"@types": "DBpedia:Disease"

},
"gramSize": "1",
"sentences": ["ef471f0c-08c9-4097-ac17-354a32944fe1"],
"vers": "1489448293875",
"words": "obesity",
"lexTypes": ["n"],
"id": "27000.",
"gramType": "singleton"

}

DBPedia
recognized

a topic

35

Current State of OpenSherlock

• In two words: Starting over.
• In the past -1:
• Implemented on Apache Solr
• Moved to ElasticSearch

• In the past -2:
• Exclusively used grammar rules for parsing

• Sentences in this presentation parsed with those

• Now using the spaCy ecosystem, and
Ontologies as well as grammar rules
• Now moving to PostgreSQL TellAsk Interface on the Solr version of

OpenSherlock (SolrSherlock)

